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ABSTRACT

This report concerns two so—called inverse problems of mathematical

physics. These are : Ci) the problem of determining a second-order differ-

ential operator (in a normal form) on the half-axis from its spectral function ;

J and , (ii) the problem of determining a hyperbolic boundary value problem of a

special form in a (non-characteristic) half-plane from its response on the

boundary to a unit impulse at so’~ie reference time t = 0 (boundary value of

I the Riemann function).

We solve problem (ii) by a natural approach, and then indicate how the

solution of problem (i) follows from the solution of problem (ii). Our solu-

tion of problem (ii) is constructive , and we obtain stability of the solution

under perturbation of the data, in a well-defined sense.

For problem Ci), we obtain the well-known result of Gel’fand and Levitan ,

in the sharp formulation given by Levitan and Gasymov (16]).
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S i g n i f i c a n c e  and Explanation

This report concerns an inverse problem of wave propagation . In general ,

inverse problems for dynamical systems require that the dynamical laws of a

system be recove red from information about the behav iour of the system , such

as its response to a specific st imulus , or its long—time asymptotic behaviour.

Direct problems of dynamical systems , which require that the behaviour of a

system be calculated from the dynamical laws , assumed known , have a long

history , and comprise the bulk of classical mathematical physics. Of course

our understanding of physical  systems proceeds by the solution of inverse

problems: we observe the behaviour of a system , and try to infer its dynamics.

Nevertheless , such inverse problems are usual ly  approached by a sequence of

guesses about the dynamical laws perhaps with some free parameters followed

by solutions of the corresponding direct problems , and attempts to adjust

the free parameters so that  the predicted behaviour of the system matches its

observed behaviour. Frontal attacks on specific inverse problems , on the

other hand , have been relatively rare .

In this report , we consider a very simple model inverse problem of wave

propagation in a one—dimensional inhomogeneous medium . E~camples of physical

problems to which our methods apply are : ( i )  the description of the

(inhomogeneous ) density distr ibution of a vibrating string from obse rvation

of the motion of one point alon g its length ; (i i )  synthesis of a cable of a

restricted type , having prescribed transmission characteristics for signals

of various frequencies.

In actual applications , stability is an important attribute of any compu-

tation scheme . One wants to ensure that small errors in the input data do not

result in huge , uncontrollable errors in the solution ; otherwise , the scheme is

generally useless. We show that our reconstruction of the dynamical law of

our simple model system is stable , in a precise sense , against small perturba-

tions of the “observed” data; in fact, we give an approximation scheme with

explicit error bounds .

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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INVERSE BOUNDAR Y VALUE PROBLEMS

AND A THEORE M OF GEL ’ FAND AND LEVI TAN j
W. Symes

§1. Introduction .

This report concerns two so-called inverse problems of mathematical physics . These are~

(i) the problem of determining a second-order differential operator (in a normal form) on

the half-axis from its spectral function ; and , (ii) the problem of determining a hyperbolic

boundary value problem of a special form in a (non-characteristic ) half-plane from its re-

sponse on the boundary to a unit impulse at some reference time t = 0 (boundary value of the

Riemann function).

We solve problem (ii ) by a natural approach , and then indicate how the solution of

problem (i) follows from the solution of problem (ii). Our solution of problem (ii) is con-

structive , and we obtain stability of the solution under perturbation of the data , in a well—

defined sense.

For problem (i), we obtain the well—known result of Gel’fand and Levitan , in the sharp

formulation given by Levitan and Gasymov (16)).

~2. Notation and Statement of Results.

We will write p~
4 E fO ,=) c p throughout . We use the common notations C~~u), C~ (u).

C~
°(U) , ~~(U), &‘ ( U ) ,  D’ (U) for the space of k-times, respectively infinitely differentiable

functions, respectively those with compact support , with the usual Freche~t topologies , and

their strong duals. Here U c P° may be closed or open.

We denote by W~’~~(U) the collection of functions in Cm t (U) whose m~~- partial

derivatives, which a ‘,riori exist as distributions, may be identified with locally absolutely

integrable functions on U ~ ~
n 
, i.e. lie in L1 (U). We give W~ ’

3 (U) its usual Frech~tb c  b c

topology.

If U c P , denote by W~~~~(UxV) the space of continuous functions on U x V whose

(distributional) partial derivative in the first (second) variable may be identified with a

continuous function of the second (first) variable with values in L1 (U) IL1 (V)).
b c  toe

Sponsored by the United States Army under contract No. DAAG29-75-C-0024 and the National
Science Foun dation under Grant No. MC575-l7385 AOL.
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According to Fubini’s theorem ,

W
1’1(UXV) c W1’1(Uxv)
b c  b c
1,1 2It ~.s clear how to define h
1

(Q) for an arbi.trary open set Q c P , si.noe the

definition is local, and any p a Q has a product neighborhood. On the other hand,

suppose Q is closed with smooth boundary, and let f € C0(Q) n W~~’
1
(int Q). Let

p a ~Q, and select U,V c P open so that UXV is a neighborhood of p in P2. Then

for each x € U (y a V), extend the partial derivative D
2f(x,

.) (0
1
f(.,y)) to a distri—

bution on V (U) by requiring

(D
2f(x,’),~~

) (D
2
f(x,.);

~~I v
) for ~ s c (V)

((D
1
f(•,y),~) < D 1f ( ’ , y ) ,~~I 0 > for ~ a C (U)

y
where V

x 
= {y a V: (x,y) a Q} (U = {x a U : (x ,y) a Q }) .

We declare that f e W~~
4 (Q) if and only if, for each choice of p,U,V as above , each

x a U ly a V), the partial derivative D
2
f(x,.) (D

1
f(•,y)) may be identified with a

locally integrable function on V (U), and the map x ~ D
2f(x,

.) (y ~ D1
f(.,y)) is

continuous, i.e. lies in C°(U; L’ (V)) (C°(V; L1 (U)).b c  b c

The topology on W ~‘1(Q) is given by the C° (Q)-seminor m and the local norms of

the form

sup f d y  02 f(x ,y) I , sup J dxjD 1f(x ,y)~x€K L yaL K

with K , L C P compact .

Finally . f t  W~~’
1 (Q) , a > 1, if and only if f a C”~~~(Q) and all m—l~~~ orde r

partial derivative s of f are in W~~,~~ (Q) . The topology on W~~
4 (Q) is defined in a

similar way to that of W~ ’1 (Q) . We note that W~~’
1 (Q) C (Q), and that the topology

on W~~’
1 is stron ger than that of W~ ’1

Functions in W~~’~~(Q) may be constructed in the following way : suppose f a

Then , as is easily verified , the function F : Q -
~ ~ defined by

F ( x ,y)  f (ax + by)

for some (a ,b) £ P 2 , lies in W~~’
1iQ) , for any closed Q wi th piecewise smooth boundary .

In fact , the space s W~~’
1 enter the theo ry deve loped here in precisely this way .

We shall use various cossnon notations for derivative s and par tial derivative s, such

-2-
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as primes , ~;u~s (ri~ t s , D 
- 

, , ~ t c .  , w i t h ou t  comment.

Our resul ts  provide an a l t e rna te  route for part of the proof of the fol lowing theorem ,

which is a sharp version , due to Levitan and Gasymov ([6)), of the celebrated theorem of

Gel’fand and Levitan ([4)).

Theorem I. A nondecreasing function ~ : P • P is the spectral function of a

boundary value problem on P~

+ (q — \ ) y  = 0

y ’ (0)  + h y(0) = 0 , h P

with q ~ W~~~(R~~), if and only if D satisfies the conditions :

I i )  the in tegra ls

d o ( \ )  cos x = I
N
(x)

converge absolutely to functions in W l(P+ ), where

( c ( \ )  — ~~.. ~T , 0 j
= 

— 
. —

L ~~~ , x < 0

Moreover , (IN 
: N a Z } converges as N ~‘ in W~~~(P

’) to a function

with f~(O) = h

(ii) Suppose u a L2 (P~ ) has compact support. Let

= f dx u ( x )  cos x
0

Then u a L
2 (P ;d~ ) ,  and

f ’” d~~(~~) I ~ V~) 2 
=

if and only if u 0 a.e.

Remark. In (ii) above and for the rest of this paper, ‘cos x” denotes the entire

function of whose value for \ > 0 is cos x . In particular, for 0

- 1’~~~ ’cos ~ x cosh • x .

The bulk of this paper is devoted to proving the following two theorems, from which

Theorem I follows, and which are of interest in their own right :

Theorem II. An even function ~ : P • 14 is the boundary value of the Riemann

function :

~ (t )  R ( O , t , O , O )  • t ~ 0

for a hype rbolic boundary value problem :

- --_-—----—-- .------- 5- --.--— -.---- .~~-- ----- .~— 5- - .~~--—--.— .-—--. - - —5--5-5-~~~~------~ -- -~. - - - .-
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u ( O ,t )  + h u(0,t) 1 0 , t a P

with q a W
~
’
0~~

( P )  if and only if

(i) £ W~~
1(P) , ~(O) = h

(ii) the kermel f ( s ,t )  = ~ (~~(s+t)  + ~ (~ — t ) )  satisfies the con dition :

for any T > 0 , there exists a (T) > 0 so that for all u a L2
UO , T ) ) ,

da 1
T dt u(s) u ( t ) f ( s , t )  + 1

T 
u i
2 

> c(T) 1
T 

ui
2

O 0 0 0

Remark. An easy compactness argument shows that the condition (ii)  above is equivalent

to the assertion that

r ds f °’ dt u ( s )  u(t ) f( s ,t )  + f ~ u i
2 

> 0

O , Q~ 0
for all u € L (R ) with compact support.

Theorem III (i) The collection of even functions a W~~~~~~(P) defined

by condition (i i)  in the statement of Theorem II forms an open set in W~
’1’1 (14)

b c  even
m+l ,l(ii ) for any even f in W1 (14) , there are precisely one h a P and one

q € W~ ’1 (P~ ) so that ?(t) = R(O,t,0,O), t ~ 0 , for the Riemann function R of

the boundary value problem

u - u  + q u = Ott xx

u (O ,t )  + h u(0,t) = 0

(iii) The :ap ~ (h,g) whose existence is implicit in statement (ii), is a

continuous map from the open set described in statement (i) to P s  ~~~~ (14+ )

I~ mark. Theorem iii is a uniqueness and stability theorem . Theorem I is , of course ,

more—or—less well known , and Theorem II could be deduced from Theorem I. Our method of

proof , however , proceeds by means of an iteration scheme , with error boun ds given explicitly

in terms of the n~snbers ~ (T) mentioned in Theorem II , and various norms of . In

particular , we obtain the stability statement of Theorem III , which seems to be new .

=4-
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~3. Heuristic Discussion of Results

Problem (1) is concerned with the spectra l function of a boundary value problem

—y ” (x) + (q(x) — A )y(x) — 0 , x > 0 , A a 14
(3. 1)

y ’ (0) + h y ( 0 )  — 0

where h is some real number. Let 4(x,A) be the solution to (1) selected by the initial

condition

•(0 ,A )  — 1

The spectral function of (1) is a non decreasing function whose associated Stieltjes measure

properly weights the “eigenfunctions” $( ~ , A ) in the spectral resolution of the identity

for ( 1), which is concisely written

tS (x— y) — f d p ( A )  •(x , A) •(y , A ) .  ( 3 . 2 )

In this heuristic discussion , we shall not worry about making precise sense of diver-

gent integrals such as ( 2 ) ;  that is done , in any case , in standard textbooks on spectral

theory of ordinary differential operators , e.g. ( 2 ) ,  Ch. XIII . Nor shall we make precise

smoothness assumptions on q

Problem (i) is: given p , find the differential equation (that is , q) and the

boundary condition (that is , h) , which give rise to p • Of course , this involves de-

scribing those nondecreasing p that arise as spectral functions of problems of type ( 1).

Problem (i)  is a refined version of the inve rse eigenvalue problem : to construct

a differential operator of some special type , cuin boundary conditions , having a given

spectrum. This problem admits a large amount of non-uniqueness in its solution . Since

the points of increase of the spectral function of (1) exactly amount to its spectrum ,

a solution to problem (i) certainly solves the inverse eigenvalue problem. The spectral

function also carries normalization information , however , and this additional information

makes its solution unique .

For a history of these problems consult (3J and references cited therein.

Problem (ii) is concerned with a hyperbolic boundary value problem

~~~~~ ~2 
+-.-

~~

- - —j . + q (x)) u(x,t) 0 (x, t) t 14 x 14
~~~t ~x

(3.3)

(O,t) + h u(O ,t) 5 0 , t a P

—5—
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The Riemann Function R(x ,t;x0
,t
0
) is the solution of the mixed problem obtained by

adding to (3.3) the initial conditions

u(x ,t
0
) — 6 (x—x 0

)

~~~~
- (x ,t~ ) 1 0

Then u(x ,t) R(x ,t:x
0
,t
0). 

Again , q is “smooth enough ”, and we do not worry for the

moment about the sense in which a distribution satisfies a mixed problem of this sort .

In fact , as exp lained in [5), R is a special distribution with well—defined restric-

tions to vertical (and horizontal) lines such as {x—O }.

We also note that our Riemann Function is a derivative of the object usually called

by that n ame ; see (1) ,  ch. VI , §15.

Note that the solution of the inhomogeneous mixe d problem

2

~—j - - — ~ — + q ( x )  u (x ,t ) = g (x ,t ) ,  t > t 0 , x > O
~5

3t ~x

(O ,t )  + h u ( O ,t )  0 (3 .4 )

u(x ,t
0
) = ~~~~

- (u , t0
) 1 0 , x > 0

can be represented in the form

u (x ,t )  = da f ° d r r dy R(x ,t ,y, -r)g(y, c) (3.5)
to 

t
o 

0

(Duhamel’s integral) . The system (3.4) models certain processes (e.g. nonuniform trans-

mission lines ) subject to an imposed force g , in which signals , represented by u

propagate with unit speed , and some boun dary conditions are imposed at the “surface ”

x — 0. Then (3.5) represents the “forward ” (t > t0
) response of the system to the

impulse g . If we choose in particular g (x ,t) — 6 (x—x0,t—t0
), then

u (x,t) — f ~ R (x,t ,x0,00)dcl, t > toto
We conclude that

ds ~
‘(s) I ft ds R(O ,s ,O,O), t > 0

represents the response at time t ~ 0 at the surface x — 0, to a unit impulse applied

a t t 0 ~~~~~~O 

-6-



Problem (ii) is: given f , find the boundary value problem (3.3), that is , find

the function q and the n umbe r h . Otherwise put , we are to recover the dynamics of

the system f rom a knowledge of its response alon g the ~sur face ’~ x = 0 to a unit im-

pulse , also applied at the su rface .

Problem (ii) is prototypical of a variety of inverse wave propagation problems of

applied mathematics. We re fe r the reader to [3] , [~3 ) ,  fo r instances.

We now observe that problems (i) and (ii) are equivalent. In fact , if we
.

denote by the self-adjoint ordinary d i f f e rent ial  operator defined by the boundary

val ue problem (3.1) (with a boundary condition at x = = supplied , if necessary), then

the Riemann function is just  the distribution kernel of cos t V ’
~ , and admits the spectral

representation

R(x,t,x0,
t
0
) 5 d~~( \ )  cos/~ (t—t 0

) ~(x,\)

In particular

~ ( t )  = R(0 , t ,0 , 0)  = 5 d p ( A )  cos/~ t

so that is the Fourier transform of ~ . Thus knowledge of f and knowledge of p

are equivalent, so problems I i )  and ( i i )  are equivalent.

Since problems Ci) and ( i i )  are equivalent , the solution by Gel’fand and Levitan

(43 of problem ( i )  also solves problem (ii). We prefer, however, to deduce the solution

of problem Ii) from that of problem (ii), and in so doi ng present a natural interpreta-

tion of the machinery in (4] in the context of hyperbolic p.d.e. Besides a better

understanding of the well-known results and methods of [43 , we are immediate ly led to

the correct stability result for problem (ii) (Theorem III) , and to the solution of a

number of other inverse boundary value problems (see (9)).

We should point out that the equivalence of problems Ii) and (ii), and the hyper-

bolic interpretation of the ideas in [43, are more—or—less well known. Ibwever, no

careful statements on the lines of Theorem II have appeared in the literature , nor has

a stability result of the type of Theorem II I  been previously asserted , to our knowledge.

Our approach to problem (ii) is based on several elementary properties of the Riemann

function , especially :

—7—
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(i) (Group property) Let U(t) be the operator which maps cauchy data

(u (x ,t0
) , ut (x ,t0

) )  fo r a solution of ( 3 . 3 )  at time t0 to the Cauchy data for

the same solution (u (x , t+t 0
) , u~~

(x , t+t 0
))  at time t+t 0 . Then

U ( s ) U ( t )  = U( s+t ) (3 . 6)

(i i)  (P rogressing Wave Expansion) The distribution ~ (y , t )  = R ( y , t ,O , 0)  can

be decomposed:

~ (y , t )  = 5 (y+t ) + ó ( y — t )  + K (y , t )

where K(y , t )  = K ( y , — t )  has one more derivative than the coeff ic ient  q in the

region y < t i ,  vanishes identically outside that region , and on the boundary

satisfies the transport equation

K(t,t) - ~ - f~ q + h . (3.7)

These assertions will be made precise in §4. They are essentially classical results

f or which methods of proof are to be found for instance in Cbs . V and VI of [ 13 .

Since the operator U is implemented by the Riemann function , ( i )  and ( i i )

plus some symmetry properties of R , together imply an integral equation for R

f ( s ,t)  ~- ( f ( s + t ) + f ( s — t ) )  = dy ~ (y, t)~~(y, s) . ( 3.8’

According to property ( i i) ,  we may replace the upper limit of integration on the right-

hand side of (3.8) by m a x ( i t i , Is I ) ,  and we obtain , for instance , fo r t > a  > 0

f ( s ,t )  = K(s ,t )  + dy K (y ,t ) K ( y ,s) . (3.9)
0

We base our solution of problem (ii) on this nonlinear Volterra equation , derived in a

different  way by Gel’fand and Levitan. The hypotheses of Theorem II are precisely what

is necessary to ensure that (3.3) has a glc~-al solution.

Further , our method of solving (3.9)  for K is manifestly stable against small

changes in the data f (Theorem III). Finally , explicit error bounds appear (~5) which

allow one to estimate the efficiency of our approach for numerical computation . This

circumstance should be compared with most other treatments of problem (i)  along the lines

of (41 (see especially (6 1 , ( 3 1 ) ,  which turn on the solution of a linear integral equa—

tion of Fre dho lm type related to ( 3 . 9 ) .  By contrast , our error estimates involve only a

lower bound for this Fred holm operator

_ _ _  --- - 5  —  .— .~~~~ . - -  - - -4
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F

Having solved (3.9) for K , it is relatively easy to show that K is the appropriate

piece of the Riemann Function for a boundary value problem (3. 3), with coef f ic ien t  func-

tion q related to K by the transport equation (3.7). This is accomplished in §7

Finally, Theorem II is used in §8 to supply the key ingredients of the proof given in

(6] of Theorem I , and we leave the matter there.

§4. Properties of the Riemann Function

This section is devoted to the necessity part of Theorem II, that is, the proof that

the boundary value of the Riemann function of a problem of form (4 .1) below must indeed

satisfy the conditions I i)  and (ii ) in Theorem II.

Most of the following assertions are standard and can be foun d , for instance , in [1],

Cbs. V and VI , in one form or another. In a few cases , our finite diffe~ entiability

hypotheses and imposition of boundary conditions in the progressing wav~’ construction of

F are incompatible with readily available results ; however, the proofs are the app ropriate

modifications of the available ones , and we omit them.

We denote by R ( ~~, ; x 0 ,t0
) the solution of the boundary value problem

u - u  + q u = Ott xx (4.1)
u (O , t )  — h u (0 ,t )  = 0x

with initial conditions

R(x , t 0~ x0 1 t ) = S (x—x ~~0 (4 .2 )
R(x ,t ,x ,t ) — 0.3t 0 0 

~=t 0
We assume that q a Wm~

l (P 
4

) m > 1. Then :b c  —

5
, I. (Regularity ) F € C~

”(P P~ x 14 ;&,(J~~))flC
m (P

+ xP+ X 14 ~‘(14~~).x0 ~ 
x x 

~ 
t 0

Property I follows from a theorem on solution s of (4.1) with smooth Cauchy data and the

Schwar z ke rne l theorem , via standard arguments .

_ _-
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II. Synenetry)

~ (x , t ;x 0 ,t0
) = R(x

0
,t

0
;x , t )

= I~(x , t 0 ;x
0 , t )

= R(x,t-s,x0,
t
0
—5 )

for s € P ; in particular

R (x ,t ;x 0 ,0) = R ( x 1—t ; x0 ,O ) .

Note that I and II combine to yield further regularity properties.

Denote by 4~ the matrix of distributions

R ( X , t ;x0 , t0
) do R (x , t ;x 0 , o)

6~(x , t ;x 0 , t0
) = 

0

~~~
- R( x ,t;x 0 , t~~) 

~~~ 
do R ( x ,t ;x 0 , o)

Then the solution of (4.1) with smooth cauchy data

u(x,t
0
) = u

0
(x), u

~~
(x,to

) = v0
(x) a C ( P ~~)

is given by

u (x , t)  
= (6~(x ,t,t ~, 

u~ (4 3)
u~~

(x ,t )  0 v0

whe re we have written ( S ,~ ) for the evaluation of a distribution S on a test function

•, and regarded 6~ as a matrix-valued distribution in the third variable. We shall find

it convenient to write
u (x

u(x,t) 
= f dx0 ~

?(x,t;x0,
t
0
) 0 0 (4.4)

ut
(x ,t) 0 v

0
(x
0
)

with the integration “in the sense of distributions”, i.e. (4.4) means (4.3). We shall

also find it convenient to indicate the composition of distribution kernels such as

by integrals (see [10] Part III; note that compositions of the type below make sense

because F is semiregular, in the language of t b O l ) .

III (Group Law)

4~(x , s+t ,x0 ,t 0
) = r dy 6~(x , s+t ;y0

s) ~~(y, s;x 0 , t0 ) .
0

This is just (3.6) written in terms of distribution kernels . It is a consequence

of the independence of time of the coefficient and boun dary condition of the problem (4.1).
S

.5 -10—
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As in 3 we write 11 for the distribution kernel on 14
+

~(y,t) R(y ,t;0 ,0)

Lemma

• 
~-(~~(0,t—s) + R ( O , t + s ) )  = I dy ~ (y , s) ~ (y, t )  (4 .5 )

Proof . By III

R(O,t+s) = f dy R(0,t+s ,y,s) R(y ,s,O ,0)
0 

~ f d y  C 5
t+s 

do R(0,t~~ ,y,o)) 02 R (y ,s ,O ,0 ) .  (4 .6)

Mowever, usir.g the symmetry properties (II’ ,

1t+s do R(O ,t+s,y,o) = f~ do R(O ,t,y,o)
S 0
D2R(y,s,0 ,0) = _D

2 
R ( y , —s ,0 ,0 ) .

Thus the second integral (composition of kernels) is odd in the par ameter s whereas

- . . . 1the f i rs t  is even . Replacing s by —s in (4.6), adding, and multiplying by ~ gives

the result .  q.e.d.

IV. (Progressing Wave Expansion)

~ (y, t )  = 6 ( y+t )  + ~ ( y — t )  .4 K(y ,t) (4.7)

m+2 , 1whe re 1(. W (9)
b c

Q =  {(y ,t )  € P ~ ‘ 1 4  : y <  t~~l • and K(y ,t) 10 , y > t i

Also the transport equati on holds : for t > 0

K (t ,~~t )  - 

~-f ~ 
q + h . ( 4 . 8 )

In the readily accessible literature, the progressing wave expansion is usually

developed for equations with C coeff ic ients  and no boundary conditions. In our case ,

we just barely get away with it , because of the finite differentiability assumptions.

Slightly altering the notation umed in §3, wr ite

I~(O ,t )  I 2~~(t )  + ~~(t )

4 (~ (O,s+t) + ~(0,s—t)) 6(s+t) + tS ( s—t ) + f(s ,t)

f(s,t) — 4 (~~(s+t) +

Then a w 1’~~(P), f Wr”
1
(PxIl) according to IV ; according to II,

is even and f is syninetric.

‘ 
— 11—

~ 
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In view of all this synunetry , we consider the integral relation (4 .5 )  when t ,

s > 0. Then the progressing wave expansion reads

~ (y,t) = ~ (y— t)  + K (y,t)

and (4.5) becomes, for t ‘ 0

~5 (s—t) + f(s ,t) = f
” dy (â(y—t) + K (y,t))(~5 (y—s) + K (y,s))
0

= 6 ( s — t )  + K (s ,t )  + f~ 
dy K (y,t) K (y, s)

0
or

f(s,t) K (s,t) + 
~ 

dy K (y,t) K (y, s) . (4 . 9 )
0

Since both sides of (4.9) are continuous , it holds for t 0 also. Restricted to

o < t < I , some T > 0 , the kernel de f ines an operator of the form I + K1
, where

I is the identity operator on L2 ((0 ,Tf l,  and K1 is the integral operator

K~g(y )  — rdt K (y,t) g(t), 0 •~ y < 1

Thus I + K~ is a boun ded (Volterra) operator on L ([0,1]), and in particular is

invertible.

Write FT for the integral operator on L2
(( 0 ,T] )  with kernel f ( s ,t ) .  Then (4 .9 )

can be written

I + F
r 

= (I + K~~~) (I + K,1,) 
(4 .10 )

which shows that the left-hand side is a positive semidefinite symmetric Fredholm operator

on L2 (( O ,T ] ) .  We claim that, in fact , it is positive definite . Indeed , it is the product

of an invertible operator and its adjoint , and the refo re positive .

Denote by c(T) > 0 the smallest eigenvalue of I + F1. Then for any ~‘ L2 ( [0 , T I ) ,

2 
, j

T
f

T 
ds dt 3(s) *(t) f(s,t) + jT ~I 2 

> ~ (t )  f~
’ 1*1

2. (4.11)
L ([0 ,11) 0 0 0 0

This completes the demonstration of the necessity of hypotheses Ci) and (ii) in

Theorem II. The next three sections are devoted to their sufficiency .

—12—

_ _ _ _ _   — _ _  _

-- --5-, - - — -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~ -~~~ .- —  -- --—--—~~~~~~ - --



— - 
a- --- • 

-~~~ 
—-- 

~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~~ 

.5 ’

• §5. Solution of a Nonlinear Volterra Equation.

r.~et T > 0 and set 
~T 

= ((s .t )  : 0 
~~
s ~ t ~~ 1) . In this and the next section ,

we shall show that the equation

f( s ,t )  — K(s,t) + dy K ( y , s )  K ( y , t )  (s , t)  a Q,~, 
(5.1)

has a solution K a W ~~’
1 

~~~ 
for eve ry symmetric f a W ~~

4 ( f 0 ,T) x (0 , 13) which

satisfies condition (4.11) for same c (T) > 0

We first show that (5.1) has a continuous solution for each continuous symmetric

f satisfying (4.11). we note in passing that continuous solutions are necessarily unique ,

since (5.1) is a Volterra equation.

The existence proof consists of three steps.

Step 1. There exists same t > 0 so that (5.1) has a continuous solution in

This is true , in fact , independently of the hypothesis (4.11). We denote by V the
0Volterra operator on C (Q~)

V K(s ,t )  f ( s ,t )  — dy K(y ,s) K(y ,t )  (s ,t )  (
0

Then a standard contraction mapping argument shows that, provided t is small enough ,

the operator V has a fixed point in C0 (Q~ ) .

Precisely, we obtain

A. Let I~ denote the sup norm in C° (Q€ ) .  Then the ball

B
~~~~

(f)  = {g a C0 (~~ ) : 11 g.-flI~ ~ ,

is invariant un der V , provided

Cr + lI f ll~ 2 
<

B. For g
1
,g
2 a B

~~€
(f), a as above ,

II Vg1 
— vg2 j~~ < 2 t ( c  + f I j i 11 g1 — g 2II ~

Thus V is a contraction operator for t small enough .

C. Denote by K the fixed point of V in C0(~~), and set

K°— f , K~~’.V ~~ K°

— 
then

K — 
~~ {2~~(c + fj ~ ) ) fl 

c (5.2)

These conclusions are completely straightforward . We exhibit them only to make explicit

the dependence of the error estimate (5.2) on the sims of f

-13-
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Step 2. We suppose that (5.1) has been solved in for same t > 0. We write

•(s .t)  — K(s,t), 0 s < t  < T

and note that (5.1) becomes , in the region 0 < s < t < t < T

f(s,t) = ~is ,t )  + f 5 dy K (y ,s) •(y , t )  (5.3)
0

which for each t € (t ,T ) ,  is a linear Volterra equation with continuous kernel , hence

has a continuous solution , which also depends continuously on the parameter t , since

the inhamogeneous term does.

Set fe
(s) — f(s ,t), k (s) — ~(s ,t).

Then , in the notation of (4.10 ,11), replacing T by t , (5 .3) becomes

— ~ + K~ ) 1~~~

and (4.11), implies

II f 1
2
2 — C 4’~ , (I + K!) (I + K — ) 4

L ( ( 0 , t ] )  t t t

(5.4)

— C 4 , (I + F—) 4  ) > c(~ ) II I1~t t t L ((0 , t ] )

We observe that we can replace aCt ) by c(t’), t’ > t, in (5.4) , in particular we can

replace c(t) by c (T). Together with the Schwarz inequality , this implies

dy I 0 ( y , t1
)~ 4(y ,t2 )I < 

~~
-
~~~~

- . (5.5)

Here ACT ) I sup ( 11 f 5 11 2 1k II 20~s ,t~T L ( ( 0 ,11) ~ L ( [0 ,11)

The important point , of course , is that the right-hand aide of (5.5) is independent of t.

Step 3. For t ~~s ,t , (5.1) reads , in the notation of Step 2

f(s ,t) — K(s,t) + jt dy •(y,s) •~y, t) + f ~ dy K(y ,s) K(y ,t). (5.6)
0

This problem is of the same form as that dealt with in Step 1. Therefore we can solve

(5.6) in a region of the form ((s,t) : t < a  < t  < t  + 6}, where 6 depends as in

Step 1 on the uniform norm of the inhamogeneous term

f~ (s ,t) — f(s,t) — ft dy $(y,s) •(y ,t) .

Since (5.5) provides us with an estimate of the size of f~ which may be taken inde-

pendent of t , the increment 6 may also be chosen independently of t

~~~~~~~~~~~ . 
,
~~
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It fol lows that  a f i n i te  number of repet i t ions  of Steps 1—3 suffice to obtain a

continuous solution K of (5.1) in Q(T). The construction proc-~eds by alternately

solving nonlinear Volterra equations over small intervals, and linear Volterra equations

• 
over large intervals. The error in each step, hence the cumulative error, and the

number of steps required, may be estimated in terms of the three numbers

A(T) , c (T)

Suppose now that f c C
m (Q

1
) .  By d i f fe rentiating (5.1) formally , we obtain equations

f or the derivatives of K , which we solve in exactly the same way as we solved (5.1) .
inThus K € c

We remark with an eye to the proof of Theorem III that the following easy estimate

shows that the condition (4.11) is stable against C0-small perturbations of

I f
T ds f

T dt ~ (s) ~~t ) ( f ( s , t )  — f ’ (s ,t ) ) I
0 0

oii 2 f ( s ,~~) - 
~~‘ (s,~ ) II 2 2( L (0 ,T1 I [0 ,1) L [0 ,1]

< I I  ~I I~ T If — f ’ I l ~ 
(5. 7)

— 
L2 (0, T] c

2for any qi c L (0,T].

It follows that , for any f € Cm
(Q,F ) which satisfies condition (4.11) , there

exists a neighborhood of f in 
~~~~~ 

in which condition (4.11) is uniformly

satisfied (for some smaller a > 0 , perhaps). Easy perturbation arguments show

that the solution K a Cm (91
) of (5.1) depends continuously on the left—hand side f,

as f ranges over any such neighborhood.

—15—
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§6. Existence and Stability in

The existence and stability of solut ions of (5.1) with locally integrable derivatives

follow from the basic existence and stability theorem for linear Volterra equations . We

state this elementary result for the reader’s convenience , though we have used it tacitly

several times in the previous section .

Theorem. Suppose a < b , 9 — {(y ,s) : a < y < s < b} , E a Ban ach Space

g a Cin Ua ,b ] ;E) , V a CB ( Q ; R ) .  Then there exists a unique ~ € &‘( [a ,b I ; E )  with

g(s)  = p (s) + f ~ dy V(y ,s) ~ (y) .

Furthe rmore , the solution map:

d5 Ua,b ) ; E) x C~ ( Q ; P)  “~ CBUa,b],E)

(g, V) ~+

is continuous.

Finally , there exists a W a Cm (Q,P), called the resolvent kernel corresponding to

V , in terms of which the solution ~ may be written

f (s) g(s ) + dy W(y ,s) gCy )

Now suppose that f a W~~
4 (142 ) satisfies (4.11) (The case f € W ~~” (142 ) , m > 2 ,

can be handled ii’. exactly the same way so we give details only for m = 2.) Since

c C1, the previous section guarantees that the solution K of (5.1) is in C1(Q1
)

for every I > 0 , and depends continuously on f € C1 (Q~).

We shall first show that K has a second derivative D~K with respect to its

second argument in C0 UO ,t ) ;  L1(Lt ,T 3 ) )  for every t a L0 ,TJ .  We dif ferentiate (5.1)

formally twice with respect to t , and obtain

D~ f(s ,t)  — D~ K(s,t) + f5 dy K(y ,s) D~ K(y ,t )  . (6.1)

Now f a W~~’
3 (R2 ) means that D~f a C° ((0 ,t]~~ L

1
U~~

,Tfl
t

) , for each t a [0,11.

• Let g :(0 ,tl + L1 (~ ,T] by g(s ) — D~f(s,•). Then the basic existence theorem asserts that

g(s) • u(s) + j~ 
dy K (y,t) uCy) (6.2)

0 0has a unique solution u a C ( [0 ,t J ,  L1
(t ,T J ) .  It remains to show that u may be iden—

tified with D~ K as a distribution. In terms of the resolvent kernel C corresponding

to K the solution u to (6.2) may be expressed :

—16—
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u(s ) g ( s)  + f ~ dy G(y,s) g(y)0
The kernel C is also continuous . If we regard u and g as ~~‘ ((t ,T])-valued

functions of s a tO,t), then for qi € C~
’((t,T)) we may write

(u(s),qi) — (g(s),$> + f ~ dy G (y ,s) (g (y) ,4)
0

— (f(s ,’),~~’) + f ~ dy G(y ,s) (f(s ,.)~~”)
0

—

where we have used the equat ion , equivalent to (5.1):

K(s ,t)  — f(s,t) + dy G(y,s) f(y,t).
0

Thus u is indeed the second derivative of K , and we conclude that

D~K € C
0 ([0 ,tJ L1(t ,T1)

for each t € [0 ,1], 1 > 0. Finally, since K € C
1
(Q1) depends continuously on

f €w 2” (~.1,~, the stability part of the basic theorem implies that D~K also depends

continuously on f , in the sense of C0((0,tl; L~it,r]), for each t

The other two formal derivatives of (5.1) read :

D~f(s,t) = D~ K(s ,t )  + C K(s ,s)) K (s,t)

+ K(s,s) D
l 

K (s,t) + 0
2 

K (s,s) K(s ,t) (6.3)

+ f ~ dy 0~X (y,s) X(y ,t)
0

D102 f ( s ,t)  • D 0
2
K(s,t) + K (s ,s)D2K(s,

t)
1 (6.4)

+ f ~ dy D2K(y ,s) D2K(y .t)
From these equations , which hold a priori in the sense of distributions , we can

isanediately deduce that K € W~~
4 (Q) ; we leave the details to the reader.

From the stability assertion about D~K and sane obvious fiddling with equations

(6.3) and (6 .4) ,  we can conclude that the map f ~ K is continuous in W~~’
2 (Q) , in a

neighborhood of every f satisfying (4.11).

Finally , we point out that K inherits from f a property somewhat more special

than that of being in , if f is of the special form

f(s ,t) • ~~
. (~ (s+t ) + ?‘(s—t)), ?‘ € W~~~CR)

Indeed , it follows from a remark in §2 that for any (a,b,c ,d) € , the function

—17— 
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s~~ f (as + b , cs + d)

is then in ~~~~ (P ) , and a simple modification of the above argument shows that the

function

s fr Kias + b , cc + d)

is then also in Wm4 on its interval of definition. In particular ,
b c

S ~ K(s,s)

de fines an element of Win
~
l (~~

1 ) .b c

The details of this argument are very similar to that used to establish that

K aW~ ’~ (Q) , and we omit them .

_ _ _ _ _ _ _ _  
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§7. Recovery of the Boundary Value Problem

We shall show that the kernel K constructed in the last sect ion is the regular

part of the Riemann function of some boundary value problem (4.1), thus completing the

proofs of Theorems II and III.

Suppose that € ~~~~~ (P) is even. Set

f (s , t )  — ~-(~ (s+t ) + ~ ( s— t ) )

~ ( 0 ) — h .

Then f a ~
1 ’~~~P

2 ) is symmetric. Suppose that f satisfies (4.11) for each T > 0.

Let K be the solution of (5.1) constructed in §~ 5 ,6 , with f as above . Then K €

JP~1’1(Q) where Q = {(s,t) : 0 < 5  ‘ t } .

As remarked in §6 , the functions

s ~ K( as + b , cs + d)

are in W~~~’
1 of their appropriate intervals of definition. In particular, the function

• • ,~ + 

q(s) = —2 ~~~~- K(s ,s)

is in Wi” ( F ) .
b c

We claim K solves the characteristic mixed problem

+ q(s)) K(s , t )  0 , s ,t € 9

(0, t)  4. h K(0 ,t)  = 0 (7.1)

K(s ,s) = h - 
~~

- f ~ q
Before showing that K solves (7 .1) ,  we remark that the problem (7.1) has a unique

solution in , as is shown by standard arguments . Since the results of §4

imply that the regular part of the Riemann function of the boundary value problem (4.1),

with q as above , must solve (7.1) also, we conclude that K is the regular part of the

Riemann function. We have there fore proven Theorem II if we show that K is a solution

of (7.1).

To do this , note first that f solves

2 
a
2 f• 

—s- - — —
~~

- f — 0 , f r( 0 ,t ) I 0 , t a F .
at as

— ig—
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(Note that f has second derivatives which are locally integrab le in F
2 ) .  According

to the integral equation

f( s , t )  K (s , t )  + f 5 dy K (y,s) K (y,t)
0

we have

(1) f(0 ,0) — K(0,0) — h

(2) (0 ,t )  — (0 ,t )  + K(0,0) K (0,t)as as

— (0, t)  + h K( 0 ,t )  5 0 , t > 0

2 2 2 2
(3) 0 — —

~~~~
- —s- f(s,t) — —s- — —s- K(s,t) — ~~~

— K(s ,s) I K(s ,t) +

at as at as

— K(s , s) D1K (s , t )  — D
2
K(s,s) K(s ,t) — f5 dy D~ K( y , s) K (y , t )  ( 7 .2 )

+ f 9 dy K(y ,s) D~ K(y ,t )

The differentiation under the integral sign above, and various integrations by parts below

are justified (for the only questionable case, m = 1) by

Lemma . Suppose u € C0 (t
1,t2 ] ,  v Du € t.

1 (t 1,t2 1 . Then

f 2 v = u(t 2
) — u (t

1
)

t l

We apply this Lemma to compute

dy D~K(y ,s) K (y ,t) —

— dy D (D
1
KCy ,s) K(y,t) — f5 dy D

1
K (y ,s) D

1
K(y ,t)

0 0

— D1K(s ,s)  K (s , t ) — D1X(0 ,s ) K(0 ,t )

+ f 5 dy J((y,s) D~K(y ,t) - f ~ dy Dy U( y , s) D
1

K ( y , t ) )

— D1K (s ,s) K ( s , t ) — D1K(0 ,s) K( 0 ,t)  — K (s ,s) D1K (s ,t )

+ K(0,s) D1
K(0,t) + f ~ dy K (y,s) D~K(y,t)

Hence for 0 a

K (S ,s) D1KC5 ,t )  — D1K (s , s)  K (s , t )
5- 

— dy K (y,s) D~K (y,t) — J 5 dy D~K C y , s) K ( y t )  (7 . 4 )
0 0

where we have made use of the boundary condition (2). By virtue of the identity

—20—
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V
K (s,s) D1K (s,t) + D2K(s ,t)

s—t
we can add (7.3) to (7 .2)  to obtain

0 — (02 — D2
) K ( s ,t )  — 2 ( .~~

— K(s ,s)) K(s ,t)
— 2 1 da

Set 

+ f 5 dy K ( y , s) (D~ - D~ ) K ( y , t)  — f ~ dy ((D~ - D~ ) K (y , s ) )  K(y , t )

u( s ,t) — (D~ — D~ ) K(s ,t )  — 2 (  
ã~

— K ( s ,s) )  X(s ,t ) .  (7 .5)

We can re—write (7 .4)  as

0 — u(s,t) + f5 dy K (y,s) u(y,t) — f ~ dy u(y ,s) K(y ,t). (7.6)
0 0

If in > 0 , we can immediately conclude that u 1 0 , Since (7.6) is a homogeneous

equation of Volterra type , which finishes the proof of (7.1) in that case. If m = 0

we must be slightly more care fu l , since we know a p ~4pri Only that u is locally inte-

grable in 9 —  ( (s ,t )  : 0 < s  < t}.

We reason as follows. Suppose that f € is approximated by f a W~~’
1

Then , according to §~ 5 ,6 , the corresponding solutions K
n a W~~

4 (Q) converge in

W~~,~~(Q) to K • As noted in §2 , the topology of is stronger than that of

If we denote by u the expression (7.5) formed with K instead of K , the sequence

u thus converges in 4 (Q) to u . However , the u all satisfy (7.6) ~nd are con-

tinuous , hence vanish identically. Thus u vanishes almost everywhere , and the differ-

ential equation in (7.1) is satisfied in the sense of distributions.

This concludes the proof of suff iciency, hence the entire proof, of Theorem II.

To prove Theorem III , we note that the coefficient q is determined by the transport

equation (characteristic boundary condition in (7 .1) ) :

q(s ) — —2 ~~~~
. K C s ,s) .

Since it was shown in §6 that K a W~~~
1 ’1 (Q) depends contin uously on a

it follows that the map

q a W~’
1((0 ,T])

is (well—defined and ) continuous in a neighborhood of every satisfying (4 .1 1) ,  which

is exactly the assertion of Theorem III.
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§8. Proof of Theorem I

Suppose p: P * F is a nondecreasing function satisfying conditions (i) and (ii)

of Theorem I

n nLemma. f , defi ned as in Theorem I , cond— Ci) , satisfies cond— (ii ) of Theorem II.

Proof . Suppose u a L2 F~ has support in (0 , T) .  Then

/ d o ( A ) I ~ (A ) j 2 
= u r n  1N d p( A ) I~ ( A ) I 2

F N - ~~ -N

= Urn j N d(  ~,- ,/~) I ~ ( X ) I 2 
+ j N da ( A ) l~~( A ) j 2

= r u I 2 
+ d a ( A ) ( f

Tds u(s)cos/~s)(f
Tdt ~ (t) cosv’5~t)

where we have used the ordinary Parseval formula for the (cosine) Fourier transform .

Now according to condition Ci) of Theorem I ,

birn i’
N d o ( X )  cos J5 s cos J~~t

N - ’ ’  -N

exists in C0
( ( 0 , T) x (0 ,1)) .  Hence

u ( s ) u ( t ) f0 do ( \ )  cos /~ s cos/X t = u ( s ) (t ) f ( s ,t )

.15 in L ([ O ,T)  x 10 ,T J ) ,  and by Fubini’ s Theorem

r d~~~) I ~ ( I ) j 2 
ff dsdt u (s ) ( t ) f ( s ,t )  .

Thus

0 r d~~(~ )j~~(~ )j
2 

— f
T u I 2 

+ J
T

J
T dsdt u ( s )~~(t ) f ( s ,t )

end condition (ii) says that the inequality is strict if u is not identically zero

s.c. This however is equivalent to Condition Cii) of Theorem II, as remarked in §2.

q.e.d

We may therefore apply Theorem II to conclude the existence of a hyperbolic

boundary value problem

+ qu O
(8.1)

u C O ,t )  + h u (0 ,t )  — 0

for which is the boun dary value of the Riernann fun ction . Here g a W~~~(P~) .

Denote by $(x , A )  the solution (in C
in
~~(R ~), entire in A € ~) of

+ (q (x) — A )~~(x,A) 5 0 , x > 0
(8.2)

•(0 , A )  — 1 , $ ‘ (O , A )  — —h .

_ _  _ _ _ _ _ _ _ _  II±.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~



~~e immediately verifies that the function

• u ’(x , t )  cos , ’ t

solves (8.1) with initial values

u~~(x , 0) =

u~~(x ,0) 0

It follows that

u A (x, t )  = f dx
0 R (x,t ,x0

,0)~~(x 0
,\)

In particular

u A (o ,t )  = cos/~ t

= f ’° dx
0 

R ( 0 ,t ,x
0
,0)  ~(x0

,\)

= f  dx~ ~~(x 0 , t )  ~ (x0 ,~~)

= ~(t , \ )  + 0f~ dx0 K(x0,t) $(x0,A )

with K

As in §6 , denote by G the resolvent kerne l for K . Then

~(t ,~~) = cos /X t + ft dx G ( x , t )  cos /~ x . (8 .3)
0

Cm the other hand , K satisfies equation (5.1) .  These two equations ( (5 .1 )  and (8.3))

constitute the input of the argument in 16), and we refer the reader to that excellent

reference for the remainder of the proof of Theorem 1.

We remark that equation (8.3) was first derived by Povzner 17] in exactly this way.

~cknowledgement: I am pleased to thank J. Nohel and R . Thrner for several helpful

conversations.
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